22 research outputs found

    Experience treating electrical storm using an ultrasound guided stellate ganglion blockade

    Get PDF
    Introduction: Electrical storm is a life-threatening condition in an often medically complex patient population. Pharmacologic ultrasound-guided stellate ganglion blockade is a treatment option in combination with maximized systemic antiarrhythmic medications. There is an emerging body of case reports supporting stellate ganglion block efficacy and safety for this condition. Methods: Retrospective study on ultrasound-guided stellate ganglion blocks for electrical storm investigating patient clinical characteristics, immediate and long-term outcomes, and procedure related complications. Results: Four (75% men) critically ill patients maximized on standard antiarrhythmic therapy underwent six bedside ultrasound-guided stellate ganglion block procedures. All blocks were unilateral left-sided, two patients underwent repeat blocks for arrythmia reoccurrence. All patients experienced at least 12 hours free of ventricular arrhythmias with two thirds lasting beyond 24 hours. There were no observed complications. Conclusions: Ultrasound-guided stellate ganglion block is an effective and safe temporizing treatment option for electrical storm. Our institution-specific multidisciplinary guidelines were helpful in providing guidance for the use of stellate ganglion blocks in electrical storm

    Protein C deficiency and acute myocardial infarction in the third decade

    Full text link
    Protein C deficiency has been associated with a predisposition to venous thrombosis and thromboembolism. Arterial thrombosis has been seen much less frequently and may require other vascular risk factors. Here we describe a young patient with protein C deficiency presenting with an acute myocardial infarction (AMI).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29245/1/0000302.pd

    Performance of the Universal Vital Assessment (UVA) Mortality Risk Score in Hospitalized Adults with Infection in Rwanda: A Retrospective External Validation Study

    Get PDF
    BACKGROUND: We previously derived a Universal Vital Assessment (UVA) score to better risk-stratify hospitalized patients in sub-Saharan Africa, including those with infection. Here, we aimed to externally validate the performance of the UVA score using previously collected data from patients hospitalized with acute infection in Rwanda. METHODS: We performed a secondary analysis of data collected from adults ≥18 years with acute infection admitted to Gitwe District Hospital in Rwanda from 2016 until 2017. We calculated the UVA score from the time of admission and at 72 hours after admission. We also calculated quick sepsis-related organ failure assessment (qSOFA) and modified early warning scores (MEWS). We calculated amalgamated qSOFA scores by inserting UVA cut-offs into the qSOFA score, and modified UVA scores by removing the HIV criterion. The performance of each score determined by the area under the receiver operator characteristic curve (AUC) was the primary outcome measure. RESULTS: We included 573 hospitalized adult patients with acute infection of whom 40 (7%) died in-hospital. The admission AUCs (95% confidence interval [CI]) for the prediction of mortality by the scores were: UVA, 0.77 (0.68-0.85); modified UVA, 0.77 (0.68-0.85); qSOFA, 0.66 (0.56-0.75), amalgamated qSOFA, 0.71 (0.61-0.80); and MEWS, 0.74 (0.64, 0.83). The positive predictive values (95% CI) of the scores at commonly used cut-offs were: UVA \u3e4, 0.35 (0.15-0.59); modified UVA \u3e4, 0.35 (0.15-0.59); qSOFA \u3e1, 0.14 (0.07-0.24); amalgamated qSOFA \u3e1, 0.44 (0.20-0.70); and MEWS \u3e5, 0.14 (0.08-0.22). The 72 hour (N = 236) AUC (95% CI) for the prediction of mortality by UVA was 0.59 (0.43-0.74). The Chi-Square test for linear trend did not identify an association between mortality and delta UVA score at 72 hours (p = 0.82). CONCLUSIONS: The admission UVA score and amalgamated qSOFA score had good predictive ability for mortality in adult patients admitted to hospital with acute infection in Rwanda. The UVA score could be used to assist with triage decisions and clinical interventions, for baseline risk stratification in clinical studies, and in a clinical definition of sepsis in Africa

    Sympatho-Excitatory Response to Pulmonary Chemosensitive Spinal Afferent Activation in Anesthetized, Vagotomized Rats

    Get PDF
    The sensory innervation of the lung is well known to be innervated by nerve fibers of both vagal and sympathetic origin. Although the vagal afferent innervation of the lung has been well characterized, less is known about physiological effects mediated by spinal sympathetic afferent fibers. We hypothesized that activation of sympathetic spinal afferent nerve fibers of the lung would result in an excitatory pressor reflex, similar to that previously characterized in the heart. In this study, we evaluated changes in renal sympathetic nerve activity (RSNA) and hemodynamics in response to activation of TRPV1-sensitive pulmonary spinal sensory fibers by agonist application to the visceral pleura of the lung and by administration into the primary bronchus in anesthetized, bilaterally vagotomized, adult Sprague-Dawley rats. Application of bradykinin (BK) to the visceral pleura of the lung produced an increase in mean arterial pressure (MAP), heart rate (HR), and RSNA. This response was significantly greater when BK was applied to the ventral surface of the left lung compared to the dorsal surface. Conversely, topical application of capsaicin (Cap) onto the visceral pleura of the lung, produced a biphasic reflex change in MAP, coupled with increases in HR and RSNA which was very similar to the hemodynamic response to epicardial application of Cap. This reflex was also evoked in animals with intact pulmonary vagal innervation and when BK was applied to the distal airways of the lung via the left primary bronchus. In order to further confirm the origin of this reflex, epidural application of a selective afferent neurotoxin (resiniferatoxin, RTX) was used to chronically ablate thoracic TRPV1-expressing afferent soma at the level of T1-T4 dorsal root ganglia pleura. This treatment abolished all sympatho-excitatory responses to both cardiac and pulmonary application of BK and Cap in vagotomized rats 9-10 weeks post-RTX. These data suggest the presence of an excitatory pulmonary chemosensitive sympathetic afferent reflex. This finding may have important clinical implications in pulmonary conditions inducing sensory nerve activation such as pulmonary inflammation and inhalation of chemical stimuli

    Systemic mapping of organ plasma extravasation at multiple stages of chronic heart failure

    Get PDF
    Introduction: Chronic Heart failure (CHF) is a highly prevalent disease that leads to significant morbidity and mortality. Diffuse vasculopathy is a commonmorbidity associated with CHF. Increased vascular permeability leading to plasma extravasation (PEx) occurs in surrounding tissues following endothelial dysfunction. Such micro- and macrovascular complications develop over time and lead to edema, inflammation, and multi-organ dysfunction in CHF. However, a systemic examination of PEx in vital organs among different time windows of CHF has never been performed. In the present study, we investigated time-dependent PEx in several major visceral organs including heart, lung, liver, spleen, kidney, duodenum, ileum, cecum, and pancreas between sham-operated and CHF rats induced by myocardial infarction (MI).Methods: Plasma extravasation was determined by colorimetric evaluation of Evans Blue (EB) concentrations at 3 days, ∼10 weeks and 4 months following MI.Results: Data show that cardiac PEx was initially high at day 3 post MI and then gradually decreased but remained at a moderately high level at ∼10 weeks and 4 months post MI. Lung PEx began at day 3 and remained significantly elevated at both ∼10 weeks and 4 months post MI. Spleen PExwas significantly increased at ∼10 weeks and 4 months but not on day 3 post MI. Liver PEx occurred early at day 3 and remain significantly increased at ∼10 weeks and 4 months post MI. For the gastrointestinal (GI) organs including duodenum, ileum and cecum, there was a general trend that PEx level gradually increased following MI and reached statistical significance at either 10 weeks or 4 months post MI. Similar to GI PEx, renal PEx was significantly elevated at 4 months post MI.Discussion: In summary, we found that MI generally incites a timedependent PEx of multiple visceral organs. However, the PEx time window for individual organs in response to the MI challenge was different, suggesting that different mechanisms are involved in the pathogenesis of PEx in these vital organs during the development of CHF

    A Holistic Systems Approach to Characterize the Impact of Pre- and Post-natal Oxycodone Exposure on Neurodevelopment and Behavior

    Get PDF
    Background: Increased risk of oxycodone (oxy) dependency during pregnancy has been associated with altered behaviors and cognitive deficits in exposed offspring. However, a significant knowledge gap remains regarding the effect of in utero and postnatal exposure on neurodevelopment and subsequent behavioral outcomes. Methods: Using a preclinical rodent model that mimics oxy exposure in utero (IUO) and postnatally (PNO), we employed an integrative holistic systems biology approach encompassing proton magnetic resonance spectroscopy (1H-MRS), electrophysiology, RNA-sequencing, and Von Frey pain testing to elucidate molecular and behavioral changes in the exposed offspring during early neurodevelopment as well as adulthood. Results: 1H-MRS studies revealed significant changes in key brain metabolites in the exposed offspring that were corroborated with changes in synaptic currents. Transcriptomic analysis employing RNA-sequencing identified alterations in the expression of pivotal genes associated with synaptic transmission, neurodevelopment, mood disorders, and addiction in the treatment groups. Furthermore, Von Frey analysis revealed lower pain thresholds in both exposed groups. Conclusions: Given the increased use of opiates, understanding the persistent developmental effects of these drugs on children will delineate potential risks associated with opiate use beyond the direct effects in pregnant women

    Comparison of five video-assisted intubation devices by novice and expert laryngoscopists for use in the aeromedical evacuation environment

    No full text
    Abstract Background The critically ill or injured patient undergoing military medical evacuation may require emergent intubation. Intubation may be life-saving, but it carries risks. The novice or infrequent laryngoscopist has a distinct disadvantage because experience is critical for the rapid and safe establishment of a secured airway. This challenge is compounded by the austere environment of the back of an aircraft under blackout conditions. This study determined which of five different video-assisted intubation devices (VAIDs) was best suited for in-flight use by U.S. Air Force Critical Care Air Transport Teams by comparing time to successful intubation between novice and expert laryngoscopists under three conditions, Normal Airway Lights on (NAL), Difficult Airway Lights on (DAL) and Difficult Airway Blackout (DAB), using manikins on a standard military transport stanchion and the floor with a minimal amount of setup time and extraneous light emission. Methods A convenience sample size of 40 participants (24 novices and 16 experts) attempted intubation with each of the 5 different video laryngoscopic devices on high-fidelity airway manikins. Time to tracheal intubation and number of optimization maneuvers used were recorded. Kruskal-Wallis testing determined significant differences between the VAIDs in time to intubation for each particular scenario. Devices with significant differences underwent pair-wise comparison testing using rank-sum analysis to further clarify the difference. Device assembly times, startup times and the amount of light emitted were recorded. Perceived ease of use was surveyed. Results Novices were fastest with the Pentax AWS in all difficult airway scenarios. Experts recorded the shortest median times consistently using 3 of the 5 devices. The AWS was superior overall in 4 of the 6 scenarios tested. Experts and novices subjectively judged the GlideScope Ranger as easiest to use. The light emitted by all the devices was less than the USAF-issued headlamp. Conclusions Novices intubated fastest with the Pentax AWS in all difficult airway scenarios. The GlideScope required the shortest setup time, and participants judged this device as the easiest to use. The GlideScope and AWS exhibited the two fastest total setup times. Both devices are suitable for in-flight use by infrequent and seasoned laryngoscopists

    Distinct Synaptic Vesicle Proteomic Signatures Associated with Pre- and Post-Natal Oxycodone-Exposure

    No full text
    The current opioid crisis, which has ravaged all segments of society, continues to pose a rising public health concern. Importantly, dependency on prescription opioids such as oxycodone (oxy) during and after pregnancy can significantly impact the overall brain development of the exposed offspring, especially at the synapse. A significant knowledge gap that remains is identifying distinct synaptic signatures associated with these exposed offspring. Accordingly, the overall goal of this current study was to identify distinct synaptic vesicle (SV) proteins as signatures for offspring exposed to oxy in utero (IUO) and postnatally (PNO). Using a preclinical animal model that imitates oxycodone exposure in utero (IUO) and postnatally (PNO), we used a quantitative mass spectrometry-based proteomics platform to examine changes in the synaptic vesicle proteome on post-natal day 14 (P14) IUO and PNO offspring. We identified MEGF8, associated with carpenter syndrome, to be downregulated in the IUO offspring while LAMTOR4, associated with the regulator complex involved in lysosomal signaling and trafficking, was found to be upregulated in the PNO groups, respectively. Their respective differential expression was further validated by Western blot. In summary, our current study shows exposure to oxy in utero and postnatally can impact the SV proteome in the exposed offspring and the identification of these distinct SV signatures could further pave the way to further elucidate their downstream mechanisms including developing them as potential therapeutic targets

    Infectious Aerosol Capture Mask as Environmental Control to Reduce Spread of Respiratory Viral Particles

    No full text
    Negative pressure isolation of COVID-19 patients is critical to limiting the nosocomial transmission of SARS-CoV-2; however, airborne isolation rooms are limited. Alternatives to traditional isolation procedures are needed. The evaluation of an Infectious Aerosol Capture Mask (IACM) that is designed to augment the respiratory isolation of COVID-19 patients is described. Efficacy in capturing exhaled breath aerosols was evaluated using laboratory experimentation, computational fluid dynamics (CFD) and measurements of exhaled breath from COVID-19 patients and their surroundings. Laboratory aerosol experiments indicated that the mask captured at least 99% of particles. Simulations of breathing and speaking showed that all particles between 0.1 and 20 µm were captured either on the surface of the mask or in the filter. During coughing, no more than 13% of the smallest particles escaped the mask, while the remaining particles collected on the surfaces or filter. The total exhaled virus concentrations of COVID-positive patients showed a range from undetectable to 1.1 × 106 RNA copies/h of SARS-CoV-2, and no SARS-CoV-2 aerosol was detected in the samples collected that were adjacent to the patient when the mask was being worn. These data indicate that the IACM is useful for containing the exhaled aerosol of infected individuals and can be used to quantify the viral aerosol production rates during respiratory activities
    corecore